Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2319541

RESUMO

High-Mobility Group (HMG) chromosomal proteins are the most numerous nuclear non-histone proteins. HMGB domain proteins are the most abundant and well-studied HMG proteins. They are involved in variety of biological processes. HMGB1 and HMGB2 were the first members of HMGB-family to be discovered and are found in all studied eukaryotes. Despite the high degree of homology, HMGB1 and HMGB2 proteins differ from each other both in structure and functions. In contrast to HMGB2, there is a large pool of works devoted to the HMGB1 protein whose structure-function properties have been described in detail in our previous review in 2020. In this review, we attempted to bring together diverse data about the structure and functions of the HMGB2 protein. The review also describes post-translational modifications of the HMGB2 protein and its role in the development of a number of diseases. Particular attention is paid to its interaction with various targets, including DNA and protein partners. The influence of the level of HMGB2 expression on various processes associated with cell differentiation and aging and its ability to mediate the differentiation of embryonic and adult stem cells are also discussed.


Assuntos
Proteína HMGB1 , Proteína HMGB2 , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Proteína HMGB1/metabolismo , Proteínas HMGB/metabolismo , Fatores de Transcrição , DNA/metabolismo , Proteínas Nucleares , Proteínas de Grupo de Alta Mobilidade
2.
Nat Genet ; 55(3): 471-483, 2023 03.
Artigo em Inglês | MEDLINE | ID: covidwho-2286470

RESUMO

Identification of host determinants of coronavirus infection informs mechanisms of viral pathogenesis and can provide new drug targets. Here we demonstrate that mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) chromatin remodeling complexes, specifically canonical BRG1/BRM-associated factor (cBAF) complexes, promote severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and represent host-directed therapeutic targets. The catalytic activity of SMARCA4 is required for mSWI/SNF-driven chromatin accessibility at the ACE2 locus, ACE2 expression and virus susceptibility. The transcription factors HNF1A/B interact with and recruit mSWI/SNF complexes to ACE2 enhancers, which contain high HNF1A motif density. Notably, small-molecule mSWI/SNF ATPase inhibitors or degraders abrogate angiotensin-converting enzyme 2 (ACE2) expression and confer resistance to SARS-CoV-2 variants and a remdesivir-resistant virus in three cell lines and three primary human cell types, including airway epithelial cells, by up to 5 logs. These data highlight the role of mSWI/SNF complex activities in conferring SARS-CoV-2 susceptibility and identify a potential class of broad-acting antivirals to combat emerging coronaviruses and drug-resistant variants.


Assuntos
COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Cromatina , COVID-19/genética , DNA Helicases/genética , Proteínas Nucleares/genética , SARS-CoV-2 , Fatores de Transcrição/genética
3.
Front Cell Infect Microbiol ; 13: 1134511, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2268706

RESUMO

Introduction: Inflammation play important roles in the initiation and progression of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), septic shock, clotting dysfunction, or even death associated with SARS-CoV-2 infection. However, the pathogenic mechanisms underlying SARS-CoV-2-induced hyperinflammation are still largely unknown. Methods: The animal model of septic shock and ALI was established after LPS intraperitoneal injection or intratracheal instillation. Bone marrow-derived macrophages (BMDMs) from WT and BPOZ-2 KO mouse strains were harvested from the femurs and tibias of mice. Immunohistology staining, ELISA assay, coimmunoprecipitation, and immunoblot analysis were used to detect the histopathological changes of lung tissues and the expression of inflammatory factors and protein interaction. Results and conclusions: We show a distinct mechanism by which the SARS-CoV-2 N (SARS-2-N) protein targets Bood POZ-containing gene type 2 (BPOZ-2), a scaffold protein for the E3 ubiquitin ligase Cullin 3 that we identified as a negative regulator of inflammatory responses, to promote NLRP3 inflammasome activation. We first demonstrated that BPOZ-2 knockout (BPOZ-2 KO) mice were more susceptible to lipopolysaccharide (LPS)-induced septic shock and ALI and showed increased serum IL-1ß levels. In addition, BMDMs isolated from BPOZ-2 KO mice showed increased IL-1ß production in response to NLRP3 stimuli. Mechanistically, BPOZ-2 interacted with NLRP3 and mediated its degradation by recruiting Cullin 3. In particular, the expression of BPOZ-2 was significantly reduced in lung tissues from mice infected with SARS-CoV-2 and in cells overexpressing SARS-2-N. Importantly, proinflammatory responses triggered by the SARS-2-N were significantly blocked by BPOZ-2 reintroduction. Thus, we concluded that BPOZ-2 is a negative regulator of the NLPR3 inflammasome that likely contributes to SARS-CoV-2-induced hyperinflammation.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Nucleares , Choque Séptico , Animais , Camundongos , Lesão Pulmonar Aguda/metabolismo , Proteínas Culina , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , SARS-CoV-2/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
4.
Biomed J ; 46(2): 100587, 2023 04.
Artigo em Inglês | MEDLINE | ID: covidwho-2283531

RESUMO

Since December 2019, the Coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread rapidly around the world, overburdening healthcare systems and creating significant global health concerns. Rapid detection of infected individuals via early diagnostic tests and administration of effective therapy remains vital in pandemic control, and recent advances in the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) system may support the development of novel diagnostic and therapeutic approaches. Cas-based SARS-CoV-2 detection methods (FnCAS9 Editor Linked Uniform Detection Assay (FELUDA), DNA endonuclease-targeted CRISPR trans reporter (DETECTR), and Specific High-sensitivity Enzymatic Reporter Unlocking (SHERLOCK)) have been developed for easier handling compared to quantitative polymerase chain reaction (qPCR) assays, with good rapidity, high specificity, and reduced need for complex instrumentation. Cas-CRISPR-derived RNA (Cas-crRNA) complexes have been shown to reduce viral loads in the lungs of infected hamsters, by degrading virus genomes and limiting viral replication in host cells. Viral-host interaction screening platforms have been developed using the CRISPR-based system to identify essential cellular factors involved in pathogenesis, and CRISPR knockout (CRISPRKO) and activation screening results have revealed vital pathways in the life cycle of coronaviruses, including host cell entry receptors (ACE2, DPP4, and ANPEP), proteases involved in spike activation and membrane fusion (cathepsin L (CTSL) and transmembrane protease serine 2 (TMPRSS2)), intracellular traffic control routes for virus uncoating and budding, and membrane recruitment for viral replication. Several novel genes (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, subfamily A, member 4 (SMARCA4), ARIDIA, and KDM6A) have also been identified via systematic data mining analysis as pathogenic factors for severe CoV infection. This review highlights how CRISPR-based systems can be applied to investigate the viral life cycle, detect viral genomes, and develop therapies against SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Interações entre Hospedeiro e Microrganismos , Pandemias , Pulmão , Teste para COVID-19 , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
5.
J Virol ; 97(2): e0175122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: covidwho-2237611

RESUMO

Porcine epidemic diarrhea virus (PEDV) belongs to the genus Alphacoronavirus of the Coronaviridae family and can cause fatal watery diarrhea in piglets, causing significant economic losses. Heterogeneous nuclear protein U (HNRNPU) is a novel RNA sensor involved in sensing viral RNA in the nucleus and mediating antiviral immunity. However, it remains elusive whether and how cytoplasmic PEDV can be sensed by the RNA sensor HNRNPU. In this study we determined that HNRNPU was the binding partner of Nsp13 by immunoprecipitation-liquid chromatography-tandem mass spectrometry (IP/LC-MS/MS) analysis. The interaction between Nsp13 and HNRNPU was demonstrated by using coimmunoprecipitation and confocal immunofluorescence. Next, we identified that HNRNPU expression is significantly increased during PEDV infection, whereas the transcription factor hepatocyte nuclear factor 1α (HNF1A) could negatively regulate HNRNPU expression. HNRNPU was retained in the cytoplasm by interaction with PEDV Nsp13. We found that HNRNPU overexpression effectively facilitated PEDV replication, while knockdown of HNRNPU impaired viral replication, suggesting a promoting function of HNRNPU to PEDV infection. Additionally, HNRNPU was found to promote PEDV replication by affecting TRAF3 degradation at the transcriptional level to inhibit PEDV-induced beta interferon (IFN-ß) production. Mechanistically, HNRNPU downregulates TRAF3 mRNA levels via the METTL3-METTL14/YTHDF2 axis and regulates immune responses through YTHDF2-dependent mRNA decay. Together, our findings reveal that HNRNPU serves as a negative regulator of innate immunity by degrading TRAF3 mRNA in a YTHDF2-dependent manner and consequently facilitating PEDV propagation. Our findings provide new insights into the immune escape of PEDV. IMPORTANCE PEDV, a highly infectious enteric coronavirus, has spread rapidly worldwide and caused severe economic losses. During virus infection, the host regulates innate immunity to inhibit virus infection. However, PEDV has evolved a variety of different strategies to suppress host IFN-mediated antiviral responses. Here, we identified that HNRNPU interacted with viral protein Nsp13. HNRNPU protein expression was upregulated, and the transcription factor HNF1A could negatively regulate HNRNPU expression during PEDV infection. HNRNPU also downregulated TRAF3 mRNA through the METTL3-METTL14/YTHDF2 axis to inhibit the production of IFN-ß and downstream antiviral genes in PEDV-infected cells, thereby promoting viral replication. Our findings reveal a new mechanism with which PEDV suppresses the host antiviral response.


Assuntos
Infecções por Coronavirus , Proteínas Nucleares , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Replicação Viral , Animais , Linhagem Celular , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Proteínas Nucleares/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , RNA Mensageiro/metabolismo , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Fator 3 Associado a Receptor de TNF/metabolismo , Fatores de Transcrição/metabolismo , Replicação Viral/fisiologia
6.
Proc Natl Acad Sci U S A ; 120(5): e2210361120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: covidwho-2236812

RESUMO

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a major health problem worldwide. Due to the fast emergence of SARS-CoV-2 variants, understanding the molecular mechanisms of viral pathogenesis and developing novel inhibitors are essential and urgent. Here, we investigated the potential roles of N6,2'-O-dimethyladenosine (m6Am), one of the most abundant modifications of eukaryotic messenger ribonucleic acid (mRNAs), in SARS-CoV-2 infection of human cells. Using genome-wide m6Am-exo-seq, RNA sequencing analysis, and Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing, we demonstrate that phosphorylated C-terminal domain (CTD)-interacting factor 1 (PCIF1), a cap-specific adenine N6-methyltransferase, plays a major role in facilitating infection of primary human lung epithelial cells and cell lines by SARS-CoV-2, variants of concern, and other coronaviruses. We show that PCIF1 promotes infection by sustaining expression of the coronavirus receptors angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) via m6Am-dependent mRNA stabilization. In PCIF1-depleted cells, both ACE2/TMPRSS2 expression and viral infection are rescued by re-expression of wild-type, but not catalytically inactive, PCIF1. These findings suggest a role for PCIF1 and cap m6Am in regulating SARS-CoV-2 susceptibility and identify a potential therapeutic target for prevention of infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , RNA Mensageiro/genética , Proteínas Nucleares/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Serina Endopeptidases
7.
Autoimmun Rev ; 22(4): 103288, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: covidwho-2220460

RESUMO

A high prevalence of antinuclear antibodies (ANA) in COVID-19 has been insinuated, but the nature of the target antigens is poorly understood. We studied ANA by indirect immunofluorescence in 229 individuals with COVID-19. The target antigens of high titer ANA (≥1:320) were determined by immunoprecipitation (IP) combined with liquid-chromatography-mass spectrometry (MS). High titer ANA (≥1:320) were found in 14 (6%) of the individuals with COVID-19. Of the 14 COVID-19 cases with high titer ANA, 6 had an underlying autoimmune disease and 5 a malignancy. IP-MS revealed known target antigens associated with autoimmune disease as well as novel autoantigens, including CDK9 (in systemic sclerosis) and RNF20, RCC1 and TRIP13 (in malignancy). The novel autoantigens were confirmed by IP-Western blotting. In conclusion, in depth analysis of the targets of high titer ANA revealed novel autoantigens in systemic sclerosis and in malignant disease.


Assuntos
Doenças Autoimunes , COVID-19 , Neoplasias , Escleroderma Sistêmico , Humanos , Autoanticorpos/análise , Anticorpos Antinucleares , Autoantígenos , Quinase 9 Dependente de Ciclina , Proteínas Nucleares , Proteínas de Ciclo Celular , Fatores de Troca do Nucleotídeo Guanina , ATPases Associadas a Diversas Atividades Celulares
8.
J Virol ; 97(1): e0161422, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: covidwho-2223572

RESUMO

Porcine epidemic diarrhea (PED) indicates the disease of the acute and highly contagious intestinal infection due to porcine epidemic diarrhea virus (PEDV), with the characteristics of watery diarrhea, vomiting, and dehydration. One of the reasons for diarrhea and death of piglets is PEDV, which leads to 100% mortality in neonatal piglets. Therefore, it is necessary to explore the interaction between virus and host to prevent and control PEDV. This study indicated that the host protein, pre-mRNA processing factor 19 (PRPF19), could be controlled by the signal transducer as well as activator of transcription 1 (STAT1). Thus, PEDV replication could be hindered through selective autophagy. Moreover, PRPF19 was found to recruit the E3 ubiquitin ligase MARCH8 to the N protein for ubiquitination. For the purpose of degradation, the ubiquitin N protein is acknowledged by the cargo receptor NDP52 and transported to autolysosomes, thus inhibiting virus proliferation. To conclude, a unique antiviral mechanism of PRPF19-mediated virus restriction was shown. Moreover, a view of the innate immune response and protein degradation against PEDV replication was provided in this study. IMPORTANCE The highly virulent porcine epidemic diarrhea virus (PEDV) emerged in 2010, and causes high mortality rates in newborn pigs. There are no effective and safe vaccines against the highly virulent PEDV. This virus has caused devastating economic losses in the pork industry worldwide. Studying the relationship between virus and host antiviral factors is important to develop the new antiviral strategies. This study identified the pre-mRNA processing factor 19 (PRPF19) as a novel antiviral protein in PEDV replication and revealed its viral restriction mechanisms for the first time. PRPF19 recruited the E3 ubiquitin ligase MARCH8 to the PEDV N protein for ubiquitination, and the ubiquitin N protein was acknowledged by the cargo receptor NDP52 and transported to autolysosomes for degradation. Our findings provide new insights in host antiviral factors PRPF19 that regulate the selective autophagy protein degradation pathway to inhibit PEDV replication.


Assuntos
Proteínas do Capsídeo , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Proteínas do Capsídeo/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas , Replicação Viral/genética , Proteínas Nucleares/metabolismo , Autofagia
9.
Int Immunopharmacol ; 115: 109701, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-2179731

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with severe lung inflammation, edema, hypoxia, and high vascular permeability. The COVID-19-associated pandemic ARDS caused by SARS-CoV-2 has created dire global conditions and has been highly contagious. Chronic inflammatory disease enhances cancer cell proliferation, progression, and invasion. We investigated how acute lung inflammation activates the tumor microenvironment and enhances lung metastasis in LPS induced in vitro and in vivo models. Respiratory illness is mainly caused by cytokine storm, which further influences oxidative and nitrosative stress. The LPS-induced inflammatory cytokines made the conditions suitable for the tumor microenvironment in the lungs. In the present study, we observed that LPS induced the cytokine storm and promoted lung inflammation via BRD4, which further caused the nuclear translocation of p65 NF-κB and STAT3. The transcriptional activation additionally triggers the tumor microenvironment and lung metastasis. Thus, BRD4-regulated p65 and STAT3 transcriptional activity in ARDS enhances lung tumor metastasis. Moreover, LPS-induced ARDS might promote the tumor microenvironment and increase cancer metastasis into the lungs. Collectively, BRD4 plays a vital role in inflammation-mediated tumor metastasis and is found to be a diagnostic and molecular target in inflammation-associated cancers.


Assuntos
COVID-19 , Neoplasias Pulmonares , Pneumonia , Síndrome do Desconforto Respiratório , Humanos , Proteínas Nucleares/genética , Lipopolissacarídeos/farmacologia , Microambiente Tumoral , Síndrome da Liberação de Citocina , SARS-CoV-2 , Fatores de Transcrição/genética , Pulmão/patologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Pneumonia/induzido quimicamente , Inflamação , Proteínas de Ciclo Celular/genética
10.
Brief Bioinform ; 23(6)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: covidwho-2097311

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the need to better understand virus-host interactions. We developed a network-based method that expands the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-host protein interaction network and identifies host targets that modulate viral infection. To disrupt the SARS-CoV-2 interactome, we systematically probed for potent compounds that selectively target the identified host proteins with high expression in cells relevant to COVID-19. We experimentally tested seven chemical inhibitors of the identified host proteins for modulation of SARS-CoV-2 infection in human cells that express ACE2 and TMPRSS2. Inhibition of the epigenetic regulators bromodomain-containing protein 4 (BRD4) and histone deacetylase 2 (HDAC2), along with ubiquitin-specific peptidase (USP10), enhanced SARS-CoV-2 infection. Such proviral effect was observed upon treatment with compounds JQ1, vorinostat, romidepsin and spautin-1, when measured by cytopathic effect and validated by viral RNA assays, suggesting that the host proteins HDAC2, BRD4 and USP10 have antiviral functions. We observed marked differences in antiviral effects across cell lines, which may have consequences for identification of selective modulators of viral infection or potential antiviral therapeutics. While network-based approaches enable systematic identification of host targets and selective compounds that may modulate the SARS-CoV-2 interactome, further developments are warranted to increase their accuracy and cell-context specificity.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Mapas de Interação de Proteínas , Proteínas Nucleares , Fatores de Transcrição , Antivirais/farmacologia , Ubiquitina Tiolesterase , Proteínas de Ciclo Celular
11.
STAR Protoc ; 3(4): 101853, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: covidwho-2086851

RESUMO

The SARS-CoV-2 envelope (E) protein hijacks human BRD4 (bromodomain and extra-terminal domain protein 4). Here, we describe a protocol to characterize the interaction of the acetylated E protein with BRD4 in vivo. We detail steps to use NMR spectroscopy to map the binding interface and include steps to monitor the effect of BRD4 inhibitors in SARS-CoV-2-infected human lung bronchial epithelial cells. This approach could be applied to study interactions involving other viral and human proteins. For complete details on the use and execution of this protocol, please refer to Vann et al. (2022).1.


Assuntos
COVID-19 , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , SARS-CoV-2/metabolismo , Proteínas de Ciclo Celular , Fatores de Transcrição/metabolismo , Proteínas Virais
13.
Biomol NMR Assign ; 16(2): 399-406, 2022 10.
Artigo em Inglês | MEDLINE | ID: covidwho-2027691

RESUMO

hPARP14 is a human ADP-ribosyl-transferase (ART) that belongs to the macroPARPs family, together with hPARP9 and hPARP15. It contains a tandem of three macro domains (MD) while each of them has different properties. The first one, namely MD1, has not been reported to exhibit a high binding affinity for ADP-ribose (ADPr) in contrast to the following two (MD2 and MD3). All three MDs exhibit an α/ß/α sandwich-like fold as reported by the deposited crystallographic structures. MD2 and MD3 recognize mono-ADP-ribosylated (MARylated) but not poly-ADP-ribosylated (PARylated) substrates and thus they allow hPARP14 to bind its targets, which can be potentially MARylated by its catalytic domain (CD). hPARP14 participates in DNA damage repair process and immune response against viruses like SARS-CoV-2, which also harbors an MD fold. Furthermore, hPARP14 like the other two macroPARPs (hPARP9 and hPARP15), is implicated in numerous types of cancer, such as B-aggressive lymphoma and sarcoma, rendering its MDs as potential important drug targets. Herein, we report the complete NMR backbone and side chain assignment (1H, 13C, 15N) of hPARP14 MD2 in the free and ADPr bound states and the NMR chemical shift-based prediction of its secondary structure elements. This is the first reported NMR study of a hPARP macro domain, paving the way to screen by NMR chemical compounds which may alter the ability of hPARP14 to interact with its substrates affecting its function.


Assuntos
COVID-19 , Proteínas Nucleares/química , SARS-CoV-2 , Adenosina Difosfato Ribose/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Transferases
14.
Cells ; 11(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: covidwho-2023200

RESUMO

Obesity is of concern to the population because it is known to cause inflammation and oxidative stress throughout the body, leading to patient predisposition for health conditions such as diabetes, hypertension, and some cancers. However, some proteins that are activated in times of oxidative stress may provide cytoprotective properties. In this study, we aim to gain further understanding of the interconnection between Nrf2 and Sesn2 during obesity-related stress and how this relationship can play a role in cardio-protection. Cardiomyocyte-specific Sesn2 knockout (cSesn2-/-) and Sesn2 overexpressed (tTa-tet-Sesn2) mice and their wildtype littermates (Sesn2flox/flox and tet-Sesn2, respectively) were assigned to either a normal chow (NC) or a high-fat (HF) diet to induce obesity. After 16 weeks of dietary intervention, heart function was evaluated via echocardiography and cardiac tissue was collected for analysis. Immunoblotting, histology, and ROS staining were completed. Human heart samples were obtained via the LifeLink Foundation and were also subjected to analysis. Overall, these results indicated that the overexpression of Sesn2 appears to have cardio-protective effects on the obese heart through the reduction of ROS and fibrosis present in the tissues and in cardiac function. These results were consistent for both mouse and human heart samples. In human samples, there was an increase in Sesn2 and Nrf2 expression in the obese patients' LV tissue. However, there was no observable pattern of Sesn2/Nrf2 expression in mouse LV tissue samples. Further investigation into the link between the Sesn2/Nrf2 pathway and obesity-related oxidative stress is needed.


Assuntos
Cardiopatias , Fator 2 Relacionado a NF-E2 , Animais , Dieta Hiperlipídica , Fator de Transcrição de Proteínas de Ligação GA , Humanos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Obesidade , Espécies Reativas de Oxigênio/metabolismo , Sestrinas
15.
Biochim Biophys Acta Gene Regul Mech ; 1865(7): 194859, 2022 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1982601

RESUMO

Viruses use diverse tactics to hijack host cellular machineries to evade innate immune responses and maintain their life cycles. Being critical transcriptional regulators, human BET proteins are prominent targets of a growing number of viruses. The BET proteins associate with chromatin through the interaction of their bromodomains with acetylated histones, whereas the carboxy-terminal domains of these proteins contain docking sites for various human co-transcriptional regulators. The same docking sites however can be occupied by viral proteins that exploit the BET proteins to anchor their genome components to chromatin in the infected host cell. In this review we highlight the pathological functions of the BET proteins upon viral infection, focusing on the mechanisms underlying their direct interactions with viral proteins, such as the envelope protein from SARS-CoV-2.


Assuntos
COVID-19 , Histonas , Cromatina , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , SARS-CoV-2 , Fatores de Transcrição/metabolismo , Proteínas Virais/genética
16.
Nucleic Acids Res ; 50(15): 8700-8718, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1973223

RESUMO

FACT (FAcilitates Chromatin Transcription) is a heterodimeric protein complex composed of SUPT16H and SSRP1, and a histone chaperone participating in chromatin remodeling during gene transcription. FACT complex is profoundly regulated, and contributes to both gene activation and suppression. Here we reported that SUPT16H, a subunit of FACT, is acetylated in both epithelial and natural killer (NK) cells. The histone acetyltransferase TIP60 contributes to the acetylation of SUPT16H middle domain (MD) at lysine 674 (K674). Such acetylation of SUPT16H is recognized by bromodomain protein BRD4, which promotes protein stability of SUPT16H in both epithelial and NK cells. We further demonstrated that SUPT16H-BRD4 associates with histone modification enzymes (HDAC1, EZH2), and further regulates their activation status and/or promoter association as well as affects the relevant histone marks (H3ac, H3K9me3 and H3K27me3). BRD4 is known to profoundly regulate interferon (IFN) signaling, while such function of SUPT16H has never been explored. Surprisingly, our results revealed that SUPT16H genetic knockdown via RNAi or pharmacological inhibition by using its inhibitor, curaxin 137 (CBL0137), results in the induction of IFNs and interferon-stimulated genes (ISGs). Through this mechanism, depletion or inhibition of SUPT16H is shown to efficiently inhibit infection of multiple viruses, including Zika, influenza, and SARS-CoV-2. Furthermore, we demonstrated that depletion or inhibition of SUPT16H also causes the remarkable activation of IFN signaling in NK cells, which promotes the NK-mediated killing of virus-infected cells in a co-culture system using human primary NK cells. Overall, our studies unraveled the previously un-appreciated role of FACT complex in coordinating with BRD4 and regulating IFN signaling in both epithelial and NK cells, and also proposed the novel application of the FACT inhibitor CBL0137 to treat viral infections.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Células Epiteliais/metabolismo , Interferons/metabolismo , Células Matadoras Naturais/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , COVID-19 , Proteínas de Ligação a DNA/genética , Células Epiteliais/imunologia , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Células Matadoras Naturais/imunologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , SARS-CoV-2 , Fatores de Elongação da Transcrição/genética , Zika virus/metabolismo , Infecção por Zika virus
17.
Cancer Rep (Hoboken) ; 5(5): e1512, 2022 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1913776

RESUMO

BACKGROUND: Mulibrey-Nanism (Muscle-liver-brain-eye Nanism = dwarfism; MUL) is a rare genetic syndrome. The underlying TRIM37 mutation predisposes these children to develop tumors frequently. In the largest published series of MUL, 8% patients were reported to develop Wilms tumor (WT). The published literature lacks data regarding the best treatment protocol and outcome of this cohort of children with WT and MUL. We report here a 2-year-old boy with WT and MUL and present a review of literature on WT in MUL. CASE: Our patient had associated cardiac problems of atrial septal defect, atrial flutter and an episode of sudden cardiac arrest. We managed him successfully with chemotherapy, surgery and multi-speciality care. He is alive and in remission at follow-up of 6 months. CONCLUSION: A total of 14 cases (including present case) of WT have been reported in MUL and treatment details were available for six cases. They were managed primarily with surgery, chemotherapy with/without radiotherapy, and all achieved remission. The outcome data is available only for two cases, one has been followed up till 15 years post treatment for WT and other is our patient.


Assuntos
Neoplasias Renais , Nanismo de Mulibrey , Tumor de Wilms , Criança , Pré-Escolar , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/terapia , Masculino , Nanismo de Mulibrey/complicações , Nanismo de Mulibrey/genética , Nanismo de Mulibrey/patologia , Proteínas Nucleares/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Tumor de Wilms/complicações , Tumor de Wilms/diagnóstico , Tumor de Wilms/terapia
18.
Cell Rep ; 40(3): 111088, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: covidwho-1906848

RESUMO

Inhibitors of bromodomain and extraterminal domain (BET) proteins are possible anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prophylactics as they downregulate angiotensin-converting enzyme 2 (ACE2). Here we show that BET proteins should not be inactivated therapeutically because they are critical antiviral factors at the post-entry level. Depletion of BRD3 or BRD4 in cells overexpressing ACE2 exacerbates SARS-CoV-2 infection; the same is observed when cells with endogenous ACE2 expression are treated with BET inhibitors during infection and not before. Viral replication and mortality are also enhanced in BET inhibitor-treated mice overexpressing ACE2. BET inactivation suppresses interferon production induced by SARS-CoV-2, a process phenocopied by the envelope (E) protein previously identified as a possible "histone mimetic." E protein, in an acetylated form, directly binds the second bromodomain of BRD4. Our data support a model where SARS-CoV-2 E protein evolved to antagonize interferon responses via BET protein inhibition; this neutralization should not be further enhanced with BET inhibitor treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/farmacologia , Interferons , Camundongos , Proteínas Nucleares , Fatores de Transcrição , Proteínas Virais
19.
Structure ; 30(9): 1224-1232.e5, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1895449

RESUMO

Emerging new variants of SARS-CoV-2 and inevitable acquired drug resistance call for the continued search of new pharmacological targets to fight the potentially fatal infection. Here, we describe the mechanisms by which the E protein of SARS-CoV-2 hijacks the human transcriptional regulator BRD4. We found that SARS-CoV-2 E is acetylated in vivo and co-immunoprecipitates with BRD4 in human cells. Bromodomains (BDs) of BRD4 bind to the C-terminus of the E protein, acetylated by human acetyltransferase p300, whereas the ET domain of BRD4 recognizes the unmodified motif of the E protein. Inhibitors of BRD4 BDs, JQ1 or OTX015, decrease SARS-CoV-2 infectivity in lung bronchial epithelial cells, indicating that the acetyllysine binding function of BDs is necessary for the virus fitness and that BRD4 represents a potential anti-COVID-19 target. Our findings provide insight into molecular mechanisms that contribute to SARS-CoV-2 pathogenesis and shed light on a new strategy to block SARS-CoV-2 infection.


Assuntos
COVID-19 , Proteínas de Ciclo Celular/metabolismo , Proteínas do Envelope de Coronavírus/metabolismo , SARS-CoV-2/fisiologia , Fatores de Transcrição/metabolismo , COVID-19/virologia , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios Proteicos
20.
Biomed Pharmacother ; 152: 113230, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: covidwho-1881709

RESUMO

BACKGROUND: Bromodomain and extraterminal proteins (BETs) are more than just epigenetic regulators of transcription. Here we highlight a new role for the BET protein BRD4 in the maintenance of higher order chromatin structure at Topologically Associating Domain Boundaries (TADBs). BD2-selective and pan (non-selective) BET inhibitors (BETi) differentially support chromatin structure, selectively affecting transcription and cell viability. METHODS: Using RNA-seq and BRD4 ChIP-seq, the differential effect of BETi treatment on the transcriptome and BRD4 chromatin occupancy of human aortic endothelial cells from diabetic patients (dHAECs) stimulated with TNFα was evaluated. Chromatin decondensation and DNA fragmentation was assessed by immunofluorescence imaging and quantification. Key dHAEC findings were verified in proliferating monocyte-like THP-1 cells using real time-PCR, BRD4 co-immunoprecipitation studies, western blots, proliferation and apoptosis assays. FINDINGS: We discovered that 1) BRD4 co-localizes with Ying-Yang 1 (YY1) at TADBs, critical chromatin structure complexes proximal to many DNA repair genes. 2) BD2-selective BETi enrich BRD4/YY1 associations, while pan-BETi do not. 3) Failure to support chromatin structures through BRD4/YY1 enrichment inhibits DNA repair gene transcription, which induces DNA damage responses, and causes widespread chromatin decondensation, DNA fragmentation, and apoptosis. 4) BD2-selective BETi maintain high order chromatin structure and cell viability, while reducing deleterious pro-inflammatory transcription. INTERPRETATION: BRD4 plays a previously unrecognized role at TADBs. BETi differentially impact TADB stability. Our results provide translational insight for the development of BETi as therapeutics for a range of diseases including CVD, chronic kidney disease, cancer, and COVID-19.


Assuntos
COVID-19 , Fatores de Transcrição , Proteínas de Ciclo Celular/metabolismo , Cromatina , Células Endoteliais/metabolismo , Epigênese Genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA